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A semimacroscopic model of an optically anisotropic nanotube suspension is derived perturbatively
from Maxwell’s equations in a dielectric medium. We calculate leading-order expressions, valid in
the dilute and semidilute limits, for theintrinsic and form contributions to the complex dielectric
tensor in terms of the volume fraction, mean orientation, aspect ratio, optical anisotropy, and optical
contrast of the nanotubes. The birefringence and dichroism are derived explicitly to leading order in
fluctuations, and the connection with depolarized light scattering is established. The results are
generalized to include tube deformation. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1760079#

I. INTRODUCTION

It is well known that flow can induce optical anisotropy
in macromolecular fluids and colloidal suspensions in the
form of birefringence and dichroism.1,2 As first demonstrated
by Peterlin and Stewart,3 these effects separate naturally into
two distinct parts; anintrinsic contribution arising from the
orientation of optically anisotropic polymer segments or par-
ticles, and aform contribution arising from anisotropy in the
segmental or density correlation function. The experimental
techniques of flow birefringence and flow dichroism have
proven to be powerful tools for studying the structural and
dynamic properties of flowing polymer melts, polymer solu-
tions, and anisotropic suspensions, which in turn has contrib-
uted to recent technological advances in the engineering and
flow processing of complex fluids.

Recently, carbon nanotubes have emerged as novel ma-
terials with potential applications in a host of advanced
technologies.4 Nanocomposites engineered from polymers
and carbon nanotubes, for example, offer the promise of
plastic materials with enhanced structural, thermal, elec-
tronic, and optical properties. Efficient bulk processing of
such composites will depend in part on a detailed under-
standing of the response of carbon nanotube suspensions and
melts to flow. As colloidal particles, nanotubes are also
somewhat unique and intriguing, in that they straddle the
interface between semiflexible polymers and microscopic fi-
bers. Given the significant optical contrast between carbon
nanotubes and most typical polymers, it is reasonable to ex-
pect that such suspensions will exhibit reasonably strong op-
tical anisotropy, making them well-suited to rheo-optical
techniques.5 Applied to such novel soft materials, the meth-
ods of flow birefringence and flow dichroism might offer
new physical insight into both fundamental flow-structure
relationships in anisotropic complex fluids, as well as funda-
mental information about the optical properties and optical
anisotropy of the nanotubes themselves.

In this paper, we present a semimacroscopic calculation
of the complex dielectric tensor of carbon nanotube suspen-

sions and melts. The approach is reminiscent of the general
theory of flow-induced optical anisotropy in dilute polymer
solutions derived by Onuki and Doi,6 and it expands on a
previous treatment of depolarized light scattering from car-
bon nanotube suspensions.5 We derive general expressions
for both theintrinsic and form contributions to the dielectric
tensor, and we derive leading-order expressions for the bire-
fringence and dichroism. The connection to depolarized light
scattering is established and the results are generalized to
include tube deformation.

II. INTRINSIC CONTRIBUTION

For a quasistatic suspension ofN optically anisotropic
nanotubes in an optically isotropic solvent of dielectric con-
stant «s illuminated by an incident electric fieldE(r ,t)
5E0ei (k•r2vt), wherek25«sv

2/c2 and k points along the
direction of propagation~see Fig. 1!, the macroscopic dielec-
tric tensor can be definedvia

D~r ,t !5 «̃•E~r ,t !5 «̃•E0ei (k•r2vt), ~1!

where the tensor«̃5(m,n51
3 x̂m«mnx̂n is homogeneous. Ifr

locates a segment of a nanotube,n̂(r ), then the spatially
varying amplitude of the displacement field induced atr is

D~r !5$a in̂~r !n̂~r !1a'@12n̂~r !n̂~r !#%•E0 , ~2!

where the localcomplexdielectric constantsa i anda' arise
from polarization and absorption along and normal to the
local symmetry axis of the nanotube, respectively, and1 is
the identity tensor. The parametersa i anda' appear in the
formulas for the depolarized scattering of monochromatic
light from nanotube suspensions.5 Equation ~2! defines a
local dielectric tensor as

«̃~r !5a in̂~r !n̂~r !1a'@12n̂~r !n̂~r !#, ~3!

when r falls within a tube and«̃(r )5«s1 otherwise. Intro-
ducing the spatial average^«̃&5V21*dr «̃(r ), whereV is the
sample volume, we obtain theintrinsic part of the dielectric
tensor

«̃05^«̃&5f@a i^n̂l n̂l&1a'~12^n̂l n̂l&!#1~12f!«s1,
~4!a!Electronic mail: erik.hobbie@nist.gov
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wheref is the volume fraction and̂n̂l n̂l&5N21( l n̂l n̂l . As
in a previous derivation of the light-scattering amplitude,5 we
neglect contributions of linear and higher order in the differ-
ence between the end-to-end vector of thel th nanotube and
its body director,n̂l , which is equivalent to assuming that the
tubes are nominally straight. The results will be generalized
to include deformation.

III. SPATIAL FLUCTUATIONS

The earlier derivation gives just the leading-order part of
the complex dielectric tensor. In general, there will be
higher-order contributions arising from the spatial variations
d«̃(r )5 «̃(r )2^«̃&. Following Jackson’s treatment of Ray-
leigh scattering,7 we obtain these terms perturbatively from
the vector wave equation forD, which can be derived from
Maxwell’s equations in a dielectric medium. In the harmonic
approximation in which all fields have a time dependence of
the formeivt, this becomes an inhomogeneous vector Helm-
holtz equation

~¹21k2!D52“Ã“Ã~D2«sE!. ~5!

Following Jackson,7 the term in parenthesis on the right-hand
side of Eq.~5! is written asd«̃(r )•D0 /«s , whereD05 «̃0

•E0eik"r. As in scattering theory, a formal solution is then
obtainedvia successive iterations in terms of the Helmholtz
Green’s function

G~r ,r 8!5
1

4p

eikur2r8u

ur2r 8u
5

1

~2p!3 E dq
eiq•(r2r8)

q22~k1 i §!2 ,

~6!

where the positive infinitesimal§ is needed to ensure causal-
ity in the displacement field,D(r ,t).6 The first-order correc-
tion is

E dr 8G~r ,r 8!¹83¹83d«̃~r 8!•D08/«s

5E dr 8d«̃~r 8!•~D08/«s!•@“8“82~¹2!81#G~r ,r 8!.

~7!

Multiplying by e2 ik"r to remove the harmonic spatial depen-
dence and taking the spatial average, this term averages to
zero,8 and the first non-vanishing correction toD is thus
second order ind«̃(r ), being

E dr 8G~r ,r 8!“8Ã“83
d«̃~r 8!

«s
•E dr 9G~r 8,r 9!“9Ã“9

3
d«̃~r 9!

«s
•D09 , ~8!

which becomes

E dr 8
d«̃~r 8!

«s
•E dr 9eik"r9

d«̃~r 9!

«s
• «̃0•E0•@“9“9

2~¹2!91#G~r 8,r 9!•@“8“82~¹2!81#G~r ,r 8!. ~9!

Resolving the singularities in the Green’s functions,8 intro-
ducing their Fourier representation, multiplying bye2 ik"r

and taking the spatial average, the correction to«̃0 is

«̃15
^d«̃2&

«s
2 • «̃01

1

~2p!3 E dqT̃~k2q!• «̃0

•F 2qq1k21

q22~k1 i §!2G , ~10!

where the tensor

T̃~q!5E dre2 iq"r^d«̃~r !•d«̃~0!&/«s
2 ~11!

is related to the structure factor. Equation~10! is analogous
to the expression derived by Onuki and Doi6 and is quite
general. As derived here, it contains two terms of
O(d«̃2/«s

2); a higher-orderintrinsic correction arising purely
from mean-square fluctuations and a leading-orderform cor-
rection involving density correlations identical to that de-
rived in Ref. 6. This result is somewhat intuitive, as one
could envision particles lacking any spatial correlation that
could still alter the polarization of incident light, with the
physical scenario being optically anisotropic particles too
small to visibly scatter. More quantitatively, for particles
lacking any segmental correlation ^d«̃(r )•d«̃(0)&
' limj→0^d«̃2&e2r 2/2j2

} limj→0^d«̃2&j3d(r ), and the second
term in Eq.~10! vanishes, implying that for such ‘‘formless’’
nanotubes the leading-order intrinsic correction to«̃0 is sim-
ply proportional to the mean-square deviation.9 The full ex-
pression for the dielectric tensor is thus

«̃'H 11
^d«̃2&

«s
2 1

1

~2p!3 E dqT̃~k2q!

•F 2qq1k21

q22~k1 i §!2G J • «̃01..., ~12!

where we have exploited that fact that«̃0 is symmetric.

IV. A USEFUL EXPANSION

Before deriving specific results applicable to limiting
cases and scenarios of practical importance, it is useful to

FIG. 1. A cartoon showing an aligned nanotube suspension. The suspending
medium is of uniform dielectric constant«s . The incident field,E0(r ,t), is
linearly polarized along the ‘‘slow’’ axis of the suspension. After transmis-
sion, the polarization is unchanged but the amplitude is attenuated by ab-
sorption. An incident field linearly polarized along the ‘‘fast’’ axis, or at 90°
to the shown scenario, is altered in a similar manner. Light linearly polarized
at an angle between these directions will also emerge attenuated, but with a
polarization that is elliptical. We seek to calculate the effective dielectric
tensor of the suspension.
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recast the earlier results more explicitly in terms of the vol-
ume fraction of nanotubes. In this manner, the mean dielec-
tric tensor is

«̃05«s11f@~a i2a'!^n̂l n̂l&1~a'2«s!1#[«s11fb̃0
~13!

and the mean-square is

^«̃2&5«s
211f@~a i

22a'
2 !^n̂l n̂l&1~a'

2 2«s
2!1#, ~14!

from which the mean-square deviation is^d«̃2&5^«̃2&2 «̃0
2

5fb̃11f2b̃2 , where

b̃15~a i2a'!~a i1a'22«s!^n̂l n̂l&1~a'2«s!
21 ~15!

and

b̃25~a i2a'!2^n̂l n̂l&
212~a i2a'!~a'2«s!^n̂l n̂l&

1~a'2«s!
21. ~16!

For the purpose of computing the two-point density correla-
tion function, we can write

d«̃~r !5~a i2a'!n̂~r !n̂~r !1~a'2«s!1, ~17!

when r locates an element of a nanotube, withd«̃(r )50
otherwise. Introducing the Fourier representation ofd«̃(r ), it
is then easy to show thatT̃(q)5V21ud«̃qu2/«s

2 , where the
scattering amplitude tensoris

d«̃q}(
j

@~a i2a'!n̂j n̂j1~a'2«s!1#e2 iq"r j , ~18!

the indexj running over all of the scattering elements of the
system. The connection to depolarized light scattering is now
apparent,10 with each of the four structure factors5 being the
square modulus of the corresponding Cartesian projection of
the tensord«̃q . Following the analysis in Ref. 5, we decom-
pose this tensor into inter and intratube contributions to ob-
tain

d«̃q5(
l 51

N

@~a i2a'!n̂l n̂l1~a'2«s!1#e2 iq"r l

3E
v l

dr 8e2 iq"r8, ~19!

where n̂l , r l , and v l are the director, center of mass, and
volume of thel th nanotube, respectively, andr 8 locates the
volume elementdr 8 with respect to the center of mass,r l .
For reasonably monodisperse nanotubes with random cen-
troids, r l , we obtain

T̃~q!'fb̃1^u f l~q!u2&/v«s
2 , ~20!

wherev is the average volume and

f l~q!5E
v l

dre2 iq"r ~21!

is a form amplitudethat depends on the shape and orientation
of the l th tube. The earlier expression forT̃(q) will be pre-
cise in the dilute and semidilute limits, where the distribution
of centroids is essentially random, and when there is limited

polydispersity. Otherwise it will be an approximation. The
validity of Eq. ~20! also depends on the decoupling

(
l 51

N

n̂l n̂l u f l~q!u2'^n̂l n̂l&(
l 51

N

u f l~q!u21..., ~22!

which is reasonable for some director distributions, but will
involve higher-order corrections that we neglect here but
consider at the end of the paper. The full expression for«̃,
otherwise exact toO(d«̃2), is thus

«̃'«s11fH b̃01
b̃1

«s
•@11 Ĩ~k!#J 1f2H b̃2

«s
1

b̃1•b̃0

«s
2

•@11 Ĩ~k!#J 1f3H b̃2•b̃0

«s
2 1...J 1..., ~23!

where

Ĩ~k!5
1

~2p!3v E dq^u f l~k2q!u2&F 2qq1k21

q22~k1 i §!2G . ~24!

There are terms of relevant order inf that we have neglected
in Eq. ~23!, but these will be of higher order in the optical
anisotropy and contrast, being ofO(d«̃4) or higher. In the
long wavelength (k→0) limit, Eq. ~24! simplifies to

Ĩ052
1

~2p!3v E dq^u f l~q!u2&q̂q̂. ~25!

In this approximation, the imaginary part of Eq.~24!—which
arises from the pole structure of the integrand and, in non-
absorbing materials, gives rise to turbidity and what is
known as form dichroism6,11 in anisotropic systems—
vanishes. Physically, this is equivalent to assuming that ab-
sorption dominates scattering, where the latter scales ask4.7

Depending on the size of the tubes, this approximation will
be reasonable for dilute to semidilute carbon nanotube sus-
pensions. As evidence for this, we measured the absolute
turbidity (l5632.8 nm) due to scattering in nonabsorbing
spherical colloidal suspensions prepared at a fixed volume
fraction of f0'1023. For aqueous latex suspensions of di-
ameterd511mm, 230, and 40 nm, the measured turbidity is
0.22, 0.59, and 0.12 mm21, respectively, the turbidity of the
empty quartz cell being 0.07 mm21. For all three of these
suspensions,Dn/ns'(1.621.33)/1.33'0.2, and the 2-mm-
thick samples were visually transparent. In contrast, a sus-
pension of multiwalled carbon nanotubes~MWNTs! dis-
persed in toluene at the same volume fraction~with a mean
tube length ofL510mm and a mean tube diameter of 2a
550 nm) exhibits an attenuation of 0.95 mm21. In the
2-mm-thick quartz cell, the MWNT-toluene suspension had a
black hue but was also visually transparent. The index of
refraction of toluene is of order 1.5 and previous reflectivity
measurements5 suggest that the approximate modulus of the
complex MWNT refractive index is of order 1.6. Comparing
the measured turbidity of the MWNT suspension with that of
the 11 mm and 40 nm spherical latex suspensions—which
span the same physical dimensions and have roughly 33 the
optical contrast—we see that absorption accounts forat least
85% of attenuation in the MWNT suspension, consistent
with the earlier approximation. At this volume fraction, we
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note that (4/p)f0(L/d)2'50 and (4/p)f0(L/d)'0.25,
with the MWNT suspension being well into the semidilute
regime.

V. LIMITING CASES

By dispersing the nanotubes in a viscoelastic polymer
melt or solution, flow can be used to orient the tubes, where
the direction and extent of orientation depend on the type of
flow, the tube aspect ratio,12 the fluid elasticity,13 and, for
semidilute suspensions, hydrodynamic interactions.14,15 For
dilute and semidilute suspensions in purely viscous fluids
under simple steady shear flow, the distribution of fiber ori-
entations is broadly peaked along a direction very close to
the flow axis.12–15 In viscoelastic fluids under shear, the ob-
served orientation is somewhat more complicated. For dilute
suspensions of fibers in weakly elastic fluids, or at a small
Deborah number~defined as the product of the shear rate and
a linear-viscoelastic relaxation time!, the steady-state orien-
tation is along the direction of vorticity, perpendicular to the
plane defined by the flow and velocity-gradient directions.16

At higher concentrations in such fluids, however, both flow
and vorticity alignment have been reported.13,16 In contrast,
for dilute and semidilute suspensions in highly elastic fluids,
or at a high Deborah number, strong flow alignment is
observed,13,17 while for dilute suspensions in fluids of inter-
mediate elasticity, the fibers orient at well-defined angles in
the flow-vorticity plane.17 Although the situation is complex,
the most striking and relevant feature is a deviation from the
stress-optical rule in its usual form, which states that the
direction of greatest optical anisotropy is along the direction
of principle strain, which for shear flow is at 45° in the
flow-gradient plane.1,6,18 In contrast, at least for nanotubes
that can be modeled as long stiff fibers, we would expect that
in many cases the dielectric tensor will be diagonal in the
orthogonal coordinate system defined by the flow field. The
dynamic nature of the tube orbits and, at low Peclet number,
thermal fluctuations will both influence the steady-state dis-
tribution.

We can thus cover a broad range of physically relevant
situations by considering the three scenarios in Fig. 2. An
isotropic distribution@Fig. 2~a!# is trivial, since there is no
anisotropy in Eq.~23!, and the idealized scenario in Fig. 2~b!
can be viewed as a limiting case of the general situation
depicted in Fig. 2~c! in which the width of the angular dis-
tribution tends to zero, so we focus on the distribution in Fig.
2~c!. The form amplitude of a tube of lengthLl and radius
al , centered at the origin with its directorn̂l pointing along
the x axis, is

f l~q!52v l

sin~Llqx/2!

~Llqx/2!

J1~alq'!

alq'

, ~26!

whereJ1(y) is the Bessel function of the first kind of order
1, q'5qxx̂1qyŷ, and v l5pal

2Ll . This expression@Eq.
~26!# can be transformed to the general situation in which the
tube axis makes an angleu l with the x axis by a rotation,
which leads to the substitutions

qx→qx cosu l1q'•ê'
(2) sinu l ~27!

and

q'
2 →@q'•ê'

(1)#21@q'•ê'
(2) cosu l2qx sinu l #

2, ~28!

whereê'
(1)5n̂l3 x̂/un̂l3 x̂u andê'

(2)5 x̂3ê'
(1) . To proceed fur-

ther, we note that for ease of computation~and to a reason-
ably good approximation, particularly in the presence of
polydispersity! we can model the square of the functions
appearing in Eq.~26! with Gaussians as

sin2~x!

x2

J1
2~y!

y2 '
1

4
expS 2

x2

3
2

y2

4 D1..., ~29!

with x5Llqx/2 andy5alq' , from which we obtain

^u f l~q!u2&'v2H 12
qx

2

4 FL2c

3
1a2~12c!G

2
q'

2

8 Fa2~11c!1
L2

3
~12c!G1...J

'v2 exp@2~j iqx!
22~j'q'!2#, ~30!

where we have introducedc5^cos2 u&—equal to 1 for per-
fect alignment and 1/3 for a random distribution—and we
have approximated the truncated series with a Gaussian. The
correlation lengths appearing in Eq.~30! are

j i
25@L2c/31a2~12c!#/4 ~31!

and

FIG. 2. A cartoon showing three different scenarios of tube orientation. The
x axis indicates the direction of flow, and in each case the director distribu-
tion is assumed to be symmetric around they and z axes. An isotropic
suspension~a! exhibits no anisotropy, while a perfectly aligned suspension
~b! exhibits anisotropy reflecting that of the individual nanotubes in the limit
of infinite dilution. The scenario in~c! models a broad number of physically
relevant situations. For suspensions under shear flow, tubes will be in peri-
odic Jeffery orbits around thez axis, and the director distribution function
can be computed as either a temporal average over a moving ensemble
containing the same tubes or as a temporal average over a fixed spatial
region, with each ‘‘snap-shot’’ of the ensemble containing a new set of
tubes.
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j'
2 5@a2~11c!1L2~12c!/3#/8. ~32!

The integrals involved in evaluating Eq.~25! are nontrivial,
although by symmetry I˜

0 is diagonal. We make one more
simplifying approximation by exploiting the fact that for rea-
sonably well-aligned tubes of sufficiently high aspect ratio,
we havej i@j' , in which case ( I˜

0)xx'0 and

Ĩ0'2~16p1/2!21~L/j i!~a/j'!2~ ŷŷ1 ẑẑ!1... . ~33!

Finally, we note that for the ellipsoidal model we are consid-
ering

^n̂l n̂l&5c x̂x̂1 1
2 ~12c!~ ŷŷ1 ẑẑ!. ~34!

All of the elements of the dielectric tensor are now cast ex-
plicitly in terms of f, c, L a, a' , a i , and«s .

VI. BIREFRINGENCE AND DICHROISM

Because the parametersa' anda i are complex, the di-
electric tensor will contain real and imaginary parts. In the
orthogonal coordinates defined by the principal axes of«̃,
one then has«̃mn5endmn , wheree1 , e2 , ande3 are the three
complex eigenvalues of«̃. The three complex refractive in-
dices arenn5nn81 inn95Aen, with the birefringence and di-
chroism defined as the difference between the largest and
smallest values of the real and imaginary parts, respectively.
In contrast to polymer solutions, the intrinsic dichroism of a
carbon nanotube suspension will be significant, reflecting the
imaginary component of the polarizability, which gives rise
to absorption. The intensity of light polarized along the di-
rectionn will be attenuatedvia exp(24pnn9d/l), wherel is
the wavelength in air andd the propagation distance. Split-
ting thenth eigenvalue of«̃ into real and imaginary parts as
en5en81 ien9 , one obtains the exact relations

nn85H en81@~en8!21~en9!2#1/2

2 J 1/2

~35!

and

nn95H 2en81@~en8!21~en9!2#1/2

2 J 1/2

, ~36!

wheren51, 2, 3. For the model derived here,ei5( «̃)xx and
e'5( «̃)yy5( «̃)zz, with the birefringence and dichroism
Dn85ni82n'8 andDn95ni92n'9 , respectively.

Comparison with experiment might require a numerical
computation of the earlier quantities, but for the sake of il-
lustration we explicitly consider only the leading-order con-
tribution here, noting that without some type of small-
contrast approximation, the general expressions become
quite involved. Then

ni5Aei'«s1
1
2 fc@~a i82a'8 !1 i ~a i92a'9 !#1... ~37!

and

n'5Ae''«s1
1
4 f~12c!@~a i82a'8 !1 i ~a i92a'9 !#

1..., ~38!

from which

Dn8' 3
4 ~a i82a'8 !f~c2 1

3!1... ~39!

and

Dn9' 3
4 ~a i92a'9 !f~c2 1

3!1... . ~40!

The quantity (3/2) (c2 1/3) is a nematicorder parameter,
being zero for a random distribution and 1 for perfect align-
ment. Equations~39! and~40! will only be rigorously correct
in the limit of small volume fraction, and for largerf one
might need higher-order corrections, evaluatingni and n'

explicitly in terms of the real and imaginary parts of the
diagonal elements of the dielectric tensor. In principle, how-
ever, a direct measure of the optical anisotropy of nanotubes
can be determined from rheo-optical data if the order param-
eter can be measured independently. Conversely, if the opti-
cal anisotropy of the tubes is known, the order parameter can
be determined from a measurement of either the birefrin-
gence or the dichrosim. Analogous versions of Eqs.~39! and
~40! are derivedvia alternate approaches by Fuller1 and Eq.
~39! is recently derived in the context of rod-like particle
suspensions by Lenstra, Dogic, and Dhont.19

VII. CONNECTION TO LIGHT SCATTERING

If the tubes have no optical anisotropy, then the light-
scattering intensity is simply proportional to^u f l(q)u2&. Oth-
erwise, for a given scattering geometry~Fig. 3! there are four
structure factors

Smn~q!}ux̂m•d«̃q• x̂nu2

5U(
l

@~a i2a'!x̂m•n̂l n̂l• x̂n

1~a'2«s!dmn# f l~q!e2 iq"r lU2

. ~41!

As in Sec. IV, for a random distribution of nanotube cen-
troids this reduces to

FIG. 3. The geometry of depolarized flow light scattering, wheres is the
polarization of the incident beam andp is the polarization of the analyzer.
For simple shear, the flow direction is along thex axis, the gradient direction
is along they axis, and the vorticity direction is along thez axis. In previous
publications~see Refs. 5 and 13!, thex direction is referred to ash and the
z direction is referred to asv. We consider scattering in thex–z plane, with
the four structure factors given by the four permutations ofs and p. The
shear rate isġ5]vx /]y.
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Smn~q!}(
l

u~a i2a'!x̂m•n̂l n̂l• x̂n

1~a'2«s!dmnu2u f l~q!u2. ~42!

In the decoupling approximation Eq.~22!, the four structure
factors have the same anisotropy. Although this approxima-
tion might be appropriate at the level of computing the form
birefringence and dichroism—particularly in light of the
strong intrinsic terms—simple consideration ofSmn(q)
shows that it is not appropriate for scattering;«̃ will always
be isotropic for random distributions butSmn(q) is by defi-
nition anisotropic. We thus require a more exact coupling
scheme, and the following approach can be used to refine Eq.
~20!. Written out explicitly, the three independent structure
factors in thex–z plane are

Sxx~q!5V21«s
22(

l
@ ud1u212 Re~d1* d2!cos2 u l

1ud2u2 cos4 u l #u f l~q!u2, ~43!

Szz~q!5V21«s
22(

l
@ ud1u212 Re~d1* d2!sin2 u l cos2 w l

1ud2u2 sin4 u l cos4 w l #u f l~q!u2, ~44!

and

Sxz~q!5Szx~q!

5V21«s
22ud2u2(

l
cos2 u l sin2 u l cos2 w l u f l~q!u2,

~45!

whered15a'2«s , d25a i2a' , and f l(q) is given by Eq.
~26! with the substitutions~27! and ~28!. Evaluation of Eqs.
~43!–~45! is done numerically for a given orientational dis-
tribution, p(u).

Figure 4 shows the computed depolarized structure fac-
tors for an isotropic distribution of nanotubes in the Gaussian
approximation @Eq. ~29!# with L510mm, a525 nm,
ud1u2/«s

250.3, ud2u2/«s
250.28, and 2 Re(d1*d2)/«s

250.58. As
an approximation,a' and a i are assumed real. Measure-
ments on alignedmetallic single-walled carbon nanotubes
~SWNTs! suggest that there is no absorption normal to the
tube axis, with strong absorption parallel to the tube axis.20

For MWNTs, which typically have a larger number of de-
fects in their graphitic structure, this absorption anisotropy
will be present but less pronounced, and we neglect it here as
a first approximation. A comparison between experiment and
theory that accounts for absorption and incorporates a variety
of rheo-optical measurements will be reported elsewhere.
The calculations reproduce the distinctive features of mea-
sured depolarized light-scattering patterns under comparable
conditions~Fig. 5!, and a quantitative study of the effect of
varying anisotropy is shown in Fig. 6. Assuming«s'1.5,
d2 /d1'1.83 impliesa i /a''3, somewhat higher than the
upper limit of scattering anisotropy measured for aligned
SWNT bundles.21 Increasing d1 with respect tod2 ~or,
equivalently, decreasinga i/a') gives good agreement be-
tween the MWNT data and theory, with the data suggesting

a i/a''1.4, somewhat lower than the lower limit of scat-
tering anisotropy measured for aligned SWNT bundles.21

The approximateq21 scattering envelope in Fig. 6 arises
from the tube-like structure of the MWNTs. For a semiflex-
ible chain of arbitrary orientation, the radial density of scat-
tering elements isn(r )}r D, whereD>1 is the fractal di-
mension of the chain. The radial distribution function is thus
g(r )}r 12d]n/]r}r D2d, from whichS(q)}q2D.

VIII. TUBE DEFORMATION

The micrographs in Fig. 5 suggest that the nanotubes are
not ideally straight. Tube deformation can arise from a vari-

FIG. 4. The numerically computed structure factors for an isotropic distri-
bution of nanotubes in the Gaussian approximation@Eq. ~29!#, with L
510mm, a525 nm, ud1u2/«s

250.3, ud2u2/«s
250.28, and 2 Re@d1*d2#/«s

2

50.58. The width of each scattering pattern is 3.5mm21. These parameters
are chosen to reflect the physical dimensions of the MWNTs used for scat-
tering and microscopy measurements~Fig. 5!, with the optical anisotropy
adjusted to obtain agreement with the data in Fig. 5.
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ety of sources, including structural defects~in which case the
deformation is ‘‘quenched’’ onto the tube!, the flexure of
extremely long suspended tubes due to thermal fluctuations
in solution, and applied and residual hydrodynamic stresses
acting on tubes in flowing suspensions and melts. The results
derived in the previous sections can be generalized to include
tube deformationvia a renormalization of the dielectric an-
isotropy,a i anda' , and a generalization of the form ampli-
tude, f l(q). As shown in Fig. 7, we can model thel th nano-
tube asNl consecutive stepsr j$ l %5bn̂j$ l %, whereb is the
segment length andLl5bNl is the contour length. The per-
sistence length of the tube can then be defined asjp( l )
'b@12^n̂j•n̂j 11& l #

21, where the bracketŝ...& l denote an
internal conformational average over thel th nanotube. The
local dielectric tensor of thej th element of this tube is given
by Eq. ~3!:

~a i2a'!n̂j n̂j1a'1, ~46!

with the mean dielectric tensor of the tube given by

~a i2a'!^n̂j n̂j& l1a'1. ~47!

Using the decomposition

^n̂j n̂j& l5@z i~ l !2z'~ l !#n̂l n̂l1z'~ l !1, ~48!

where the body directorn̂l is the dominant eigenvector of
^n̂j n̂j& l with eigenvaluez i( l ) and z'( l ) is the remaining

FIG. 6. The depolarized structure factorSzz(q) computed for varying an-
isotropy, where the dashed line showsq21 power-law behavior. Scattering
profiles have been generated for an isotropic distribution ofL51 mm, a
51 nm SWNTs~upper curve! assumingd2 /d1'1.83, and for isotropic dis-
tributions of L510mm, a525 nm MWNTs assumingd2 /d1'1.83, 1.3,
and 1.03, where the latter gives the best agreement with scattering data in
Fig. 5.

FIG. 7. To include deformation, we model a tube as the series of consecu-
tive steps,r j5bn̂j , whereb is the segment length andL5bN is the contour
length. The body director,n̂, is the dominant eigenvector of the orientation
tensor,^n̂j n̂j&, and the moment tensor,^rr &, where the vectorr locates an
element of the tube with respect to its centroid. The eigenvalues of the
former renormalize the optical anisotropy, while the eigenvalues of the latter
define the ellipsoidal Gaussian envelope that gives a measure of the effec-
tive shape.

FIG. 5. Depolarized light-scattering patterns measured for an isotropic se-
midilute (f'331023) MWNT-polymer suspension with a mean tube
length and diameter comparable to those used in Fig. 4 (L'10mm, a
'25 nm). The width of the upper right scale bar is 3.5mm21. The lower
image is a 2003 optical micrograph of the same suspension, with a scan-
ning electron microscopy image before dispersion as inset (width
51.3mm). The scale bar is 10mm. Due to absorption, individual tubes
appear as shadows on a bright incoherent background, in much the same
way that incoherent light emitted on a dark background creates an image of
a fluorescently labeled deoxyribose nucleic acid~DNA! molecule. As in the
case of fluorescently labeled DNA, the MWNTs appear to be of larger di-
ameter than they actually are.
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smaller ~azimuthally-symmetric! eigenvalue, Eq.~47! be-
comes

~a i2a'!@z i~ l !2z'~ l !#n̂l n̂l1@a'1z'~ l !~a i2a'!#1,
~49!

where Tr̂ n̂j n̂j&52z'1z i51. Comparing Eq.~49! with the
coarse-grained expression for the same quantity,@a i

eff(l)
2a'

eff(l)#n̂l n̂l1a'
eff(l)1, we obtain expressions for the renor-

malized anisotropy of thel th nanotube

a'
eff~ l !5a'1z'~ l !~a i2a'! ~50!

and

a i
eff~ l !2a'

eff~ l !5~a i2a'!@z i~ l !2z'~ l !#. ~51!

The results of the preceding sections can be generalizedvia
the substitutionsa i→^a i

eff(l)& and a'→^a'
eff(l)&, where the

brackets denote an ensemble average over the suspension.
The second generalization involves the form amplitude,

f l(q), as given by Eq.~21!. Written out explicitly, this is

f l~q!5E
v l

dre2 iq"r'E
v l

dr F12 iq"r2
1

2
~q"r !21...G ,

~52!

in the limit of smallq. Integrating Eq.~52! term by term, the
linear contribution vanishes, giving the Gaussian approxima-
tion

f l~q!5v l S 12
1

2
q•^rr & l•q1...D'v l expS 2

1

2
q•^rr & l•qD ,

~53!

which depends on the moment tensor,̂ rr & l

5v l
21*v l

dr (rr ). By symmetry, this will have the same prin-
cipal axes aŝ n̂j n̂j& l , the dominant eigenvector being the
body director, n̂l . Denoting the large eigenvalue
(1/12)Leff

2 (l) and the small eigenvalue (1/4)aeff
2 (l), a tube

with its body director aligned with thex axis has

u f l~q!u2'v l
2 exp@2 1

12 Leff
2 ~ l !qx

22 1
4 aeff

2 ~ l !q'
2 #, ~54!

which when combined with Eqs.~27! and~28! is sufficient to
include tube deformation in the Gaussian approximation, all
of the previous results being generalizedvia the substitutions
L2→^Leff

2 & anda2→^aeff
2 &.

As a specific example we consider the Kratky–Porod
model of a semiflexible chain with no torsional stress,22 with
the Hamiltonian

H52
k

b (
j 52

N

n̂j•n̂j 2152
k

b (
j 52

N

cosu j , ~55!

whereu j5cos21(n̂j•n̂j 11) is the bending angle between suc-
cessive orientation vectors,k is the bending modulus, and
the persistence length isjp5k/kBT. The orientational corre-
lation function decays exponentially with distance along the
chainvia22

^n̂i•n̂j&5e2bu i 2 j u/jp. ~56!

We assume that the chain is stiff, so that body directorn̂ is
approximately equivalent toR/Rg , where

Rg
25^R2&5K S b(

j 51

N

n̂j D 2L ~57!

is the mean-square end-to-end vector of the chain, which is
simply related to the dominant eigenvalue of^rr & defined
earlier, and Eq.~57! can be evaluated in the limit of largeN
to obtain

Rg
2'

Nb2 sinh~b/jp!

cosh~b/jp!21
'2Nbjp52Ljp . ~58!

The remaining eigenvalue follows from the mean-square
transverse displacement

R'
2 5N21K (

j 51

N

@ro j2~ro j•n̂!n̂#2L , ~59!

wherero j5b( i 51
j n̂i locates thej th segment of the tube with

respect to one of its ends. For stiff chains in which the ma-
jority of segments lie onR, this can be approximated by

R'
2 'b2N21(

j 52

N

^u j
2&5b3/jp , ~60!

where the second step follows from equipartition. Note that
R' vanishes in the limit of largejp , as expected. In a similar
manner, it is straightforward to show that for^n̂j n̂j&, z i

'(2/N)(Rg /b)21 andz''12(1/N)(Rg /b).

IX. CONCLUSIONS

We have derived an expression for the dielectric tensor
of a dilute to semidilute suspension of optically anisotropic
nanotubes. The result is expressed as a power series in the
volume fraction, optical anisotropy, and optical contrast of
the suspension. Within this framework, the connection to de-
polarized light scattering has been established and the results
have been generalized to include tube deformation of arbi-
trary origin. A variety of rheo-optical data~light-scattering,
optical microscopy, birefringence, and dichrosim! for flow-
ing polymer-dispersed carbon nanotube suspensions will be
analyzed elsewhere. By incorporating an independent mea-
sure of the shape of the tubes and the orientational distribu-
tion function,p(u) ~from stroboscopic video microscopy for
MWNTs or small-angle neutron scattering for SWNTs, for
example!, we expect to obtain quantitative information about
the optical anisotropy of carbon nanotubes that can then be
used to quantify their orientation in flowing viscoelastic
polymer melts. Although the results are derived in the dilute
and semidilute limits, the results can be applied to more con-
centrated suspensions, for whichnL35(4/p)f0(L/d)2.1
andndL25(4/p)f0(L/d).1, by including interparticle cor-
relations in a derivation of an effective form contribution that
incorporates structure.23

We conclude by noting the paucity of optical anisotropy
data on carbon nanotubes. In part, this reflects the scarcity of
well-dispersed, well-aligned nanotube materials. For the sole
purpose of measuring this anisotropy, elongational flows will
yield better fiber alignment than shearing flows, and one
could envision spinning composite fibers in noncrystalline
polymer matrices that could then be optically probed at a
variety of wavelengths to map out the full dielectric spec-
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trum. All of the earlier results would directly apply to the
analysis of such data. The formalism derived here might also
prove useful in optical flow studies of any type of dilute or
semidilute rod-like particle or fiber suspension, such as actin
filaments, tobacco mosaic virus, worm-like micelles, and he-
matite rods,24,25 in particular, which should also exhibit in-
trinsic absorption.
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